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ABSTRACT 

The research described in this thesis consists of an 

application of the hierarchical distribution function for- 

m a l i s m  t o  the cosmogonical problem of the development of 

irregularities in an expanding universe. 

The cosmological setting of the work to follow I s  

first presented in a brief resume of certain aspects of 

Layzer's hypothesis of gravitational clustering. Next, the 

equations of motion of EI cosmic distribution of mutually 

gravitating point masses are obtained in a particularly 

convenient set of position, velocity, and time coordinates. 

In these coordinates the gross expansion of the universe is 

transformed away ,and in its place an apparent bnckground of 

negative mass and an explicit time dependence of the gravl- 

tational constant appear. 

The formalism of distribution and correlation func- 

tions is then developed with emphasis placed upon the gen- 

erating functional of ~golioubov. The generating functional 

method is employed in a new derivation of the equations of 

motion for the correlation functions. Layzer's clustering 

spectrum is redefined in terms of the two-partlcle correla- 

tion function to obtain a quantity more appropriate to a 
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p art 1 c ul R t e di s t ri but Ion. 

Various models of clustering are next studied and the 

simplicity of the correlation functions as opposed to the 

distribution functions exhibited, The clustering spectrum 

for a three-level hierarchical distribution of mass points 

is explicitly calculated with the a i d  of the generating 

functional. It is found that pronounced clustering on 8 

distance scale A does not necessarily imply 8 peak In the 
clustering spectrum at k s l / t  

expect. 

as one might Intuitively 

The dynamics of clustering are then investigated and 

the energy theorem for the peculiar kinetic and potential 

cmer*gles derived. The simplification resulting from the 

assumption of w e a k  clustering is exploited in the derivation 

of a useful integral equation for the clustering spectrum. 

This Inte4;ral equation is numerically solved under the 

assumption of certain simple initial conditions. As expected, 

it 1s found that clustering on a distance scale much smaller 

than Jeans' critical wavelength is overcome by Landau damp- 

ing or phase mixing but thnt clustering on a much larger 

scale proceeds to grow. 

h 
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INTRODUCTIOR 

The work to be described In this thesis was motl- 

vated by certain cosmological speculations of Do Layzer. It  

represents an effort to provide a suitable mathematical 

framework for the examination and extension of these ideas. 

It is therefore appropriate to briefly outline the relevant 

hypotheses in order to make clear the cosmological setting 

of the work to follow, 

I, THh COSMOLOOICAL SETTING 

Most modern cosmogonical theories are based upon the 

assumption that more or less structureless, perhaps turbu- 

lent, clouds of dust and gas can condense or fragment to 

form stars and planets, Layzer (1) has investigated this 

process of fragmentation and has concluded that it cannot 

occur under circumstances likely to be realized in nature, 

To circumvent this difficulty Layzer (2) had earlier 
advanced the hypothesis of gravitational clustering, He 

stated the hypothesis as follows: 

Consider a cosmic distribution of matter in which 
there are slight local irregularities. As the universe 
expsnds the irregularities become more and more pro- 
nounced until finally self-gravitating systems separate 
out. The newly formed systems play the role of particles 
in a new cosmic distribution, which will also have 
slight local lrregularlties, in general, and the stage 
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is set for a repetition of the clustering process. 
Specifically, the planets and stars are assumed to form 
near the beginning of the expansion by gravitational 
clustering of gas and dust. Then multiple stellar 
systems, star clusters, and galaxies are assumed to form 
In a cosmic distribution of stars, And finally multiple 
galactic systems, groups of galaxies, and great clusters 
of galaxies are assumed to form by gravitational 
clustering in a cosmic distribution of galaxies. 

Layzer recognizes that at each stage of the cluster- 

ing process there must exist some organization at all levels  

of astronomical size. For example, even as stars and p l a n e t s  

are being formed there must already be Incipient clustering 

on the galactic and multi-galactic leveIs. The principal 

hypothesis is that significant small-scale clustering 

precedes significant large scale clustering. 

In order to provide a measure of the degree of 

clustering associated with systems of each characteristic 

size Layzer introduces the clustering spectrum, the three- 

dimensional Fourier transform of the autocorrelation 

function of the peculiar part of the cosmic mass distribution, 

Let the mass density of the cosmic distribution be divided 

Into a part independent of position and a part of vanishing 

space average. 

h 

where 
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The cosmological principle As assumed to hold and therefore 

the distribution Is, on some sufficiently large scalar, sta- 

Istically homogeneous end Isotropic. This lmpl las 

= ( Y e )  fo() 
where f(x), the autocorrelation function, depends on the 

magnitude of x’ only, Note that the limit I s  assumed to be 

independent of the location of the volume fi . 
Consider the gravitation& energy per unit mass 

possessed by this cosmic distribution, It is convenient to 

think of it as the l i m i t  of the specific potential energy of 

a finite distribution as the Size of the distribution tends 

toward infinity. 

The limit of the f i r s t  term does not exist, but as 

this term is Independent of the clustering we may regard it 

as an uninteresting although infinite constant, In the 

A 
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second and t h i r d  terms make the change of variables s-%+3v, 

and l e t  the x Integration extend over all space. We then 

find 

And s1milarI.y , 

Thus, the contribution of the density fluctuations to the 

specif ic  potential energy may be written 

It  i s  assumed that f ( x )  decreases suf f ic ient ly  

rapidly a t  large distances so that the Integral converges. 

Let us express t h i s  Integral In terms of the Fourier trans- 

form of f (x ) .  

. -  



Using the well known Fourier transform of l/rr 

and ParseVal’s theorem In the form, 

re obtain finally the following result, 

5 

(9)  

L 

$(k) the clustering spectrum, thus describes the 

distribution of peculiar potential energy in wave number 

space. Layzer interprets 

clustering associated with systems of characteristic size 

l /k,  For that reason the clustering spectrum assumes 8 

central role in h i s  cosmology, He assumes that for a dls-  

tribution characterized by clustering on some well defined 

scale, say L, 

hood of k=l/L, The actual situation will become somewhat 

clearer when the spectrum function Is actually calculated 

for certain specific distributions In chapter IV, 

&k) as indicating the degree of 

a L ( k )  will exhibit a peak in the neighbor- 

When one observes the distribution of matter in 

astronomical systems throughout the visible universe one 
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notices an approximately hierarchical organization. That is, 

astronomical systems do not occur with equal frequency In 

all sizes, but rather they seem more or less concentrated 

at certain levels--stars, stellar clusters, galaxies etc. 

To be sure, t h i s  hierarchical organization is not at all 

precise, but it does seem to exist, In Layzer's terms the 

clustering spectrum appears to exhibit peaks. Since I t  seems 

unlikely that a well deflned hierarchical organization 

existed very early in the expansion, the development of 

this organization I s  one of the outstanding features to 

be accounted for by any successful cosmology. Layzer con- 

Jectures that the spectrum function I s  unstable In the sense 

that small positive perturbations In the Initial spectrum 

tend to grow at the expense of negative fluctuations, A 

qualitative argument In support of this conjecture proceeds 

as follows. 

Imagine a sharply hierarchical cosmic distribution 

of matter, Let the lowest level consist of pre-stars, 

relatively compact masses of dust and gas in the process of 

Kelvin contraction, In this process gravitational energy I s  

converted Into heat and i s  then radiated away. One may view 

this radiation as e i t h e r  an outflow of positive energy or 

alternatively as an Inflow of blndlng energy, Now by the 



7 
assumption of a hierarchical organization the pre-stars are 

grouped in clusters, the clusters In superclusters, and so 

on. Inelastic collisions between pre-stars will tend to 

transfer orbital kinetic energy of the pre-stars Into 

thermal energy which will then be radiated away. The clusters 

will thus tend to become increasingly compact, In other 
terms, the Inflow of binding energy Into the pre-stars 

represented by their radiation is fed In turn into the 

clusters. In a similar way collisions between clusters 

result in a flow of binding energy from the clusters to the 

superclusters. One thus obtains a picture of binding energy 

cascading from small-scale Ievels to large-scale levels. 

Imagine now that some level, the cluster level for 

example, is particularly well developed, In that case the 
clusters will be unusually compact Find collisions between 

pre-stars will be frequent. There will consequently be a 

high rate of binding energy Inflow into the cluster level. 

On the other hand collisions between clusters will be 

Infrequent and the clusters themselves will be relatively 

resistant to disruption during these encounters, Thus, there 

will be a low rate of binding energy outflow from the 

cluster level t o  the supercluster level, The net result I s  

that organization on the cluster level Will become even more 

intense at the expense of organization on the pre-star and 

. _ _ _  - . 



supercluster levels. 

Layzer likens this flow of binding energy to the 

cascading of sand through a vertical series of funnels, 

each funnel representing a level of the clustering hier- 

archy. In this analog the outflow from an overly full 

funnel tends to diminish because of Increased friction 

between the grains of sand. 

Although this argument has been predicated upon a 

distribution which is already sharply hierarchical, its 

conclusion P that intense clustering levels tend to develop 

at the expense of less intensly developed levels, may 

presumably apply to distributions In which there is only a 

tendency toward hierarchical organization. If that is the 

case the spectrum function is unstable In the sense 

mentioned. 

One feature of the purely gravitational analysis to 

follow is the absence of any characteristic linear dimension. 

From this I t  follows that the actual occurence of character- 

istic clustering scales cannot be determined by the gravi- 

tational dynamics alone but rather by the initial conditions. 

The present work I s  therefore necessarily Incomplete and I s  

Intended to complement an investigation of the non-gravita- 
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tiona processes which govern the development of lrregular- 

ltles early In the course of the expansion. 

The analysis presented in thesis is limited also 

in another way. As will be shown in chapter V, the transfer 

of binding energy from one clustering level to another I s  

essentially a non-linear phenomenon. However, because of the 

great complexity of a suitable non-linear treatment the 

analysis presented here I s  limited to the linearized approx- 

lma t Ion 

T h l s  thesis then does not represent In any sense a 

complete solution of the clustering problem but It I s  hoped 

that I t  I s  a s t e p  In that direction. 



CHAPTER I1 

THE SQUATIIomS OF MOTION 

TBe research to be described in this thesis has been 
directed at understanding the purely gravitational aspects 

of cosmic clustering. Thus, only gravitational forces are to 

be treated and such phenomena as thermal radiation are to be 

ignored. As a consequence, the details of cIusterlng on the 

pre-stellar scale will be inaccurate as soon as the pre- 

stars become dense enough for non-gravitational forces and 

radiation to become important. It is expected however that 
the general structure of clustering at large characteristic 

distances and the details of the flow of peculiar binding 

energy from one clustering level to another should be con- 

tained in this purely gravitational treatment. 

I. THE COSMIC DISTRIBUTION 

At this point I t  is necessary to choose a particular 

representation of the distribution of matter. The two most 

reasonable representations are a distribution of point 

particles and a continuous distribution of mass density. 

Although these two representations appear very different 

they become much less so when the problem is treated in 

statistical terms. In that case the probability of finding a 
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particle at some point in the particulate view behaves very 

much like the average mass density in the continuous view, 

The only difference between the two representations arises 

from the effects of close encounters between particles, 

essentially relaxation phenomena. One may say that when 

statistically treated the particulate representation 

approaches the continuous representation as the average 

particle mass approaches zero and the number density of 

particles approaches Infinity %n such a way as to keep their 

product constant. We will call this tho continuum Iimit. In 
this sense the particulate representation is the more gen- 

eral  of the two since it contains the continuum representa- 

tion as a limit. 

If one intends to use the particulate description 

only as an intermediate step and to always take the con- 

tinuum limit the two views are precisely equivalent, The 

particulate view I s  still to be preferred however because it 

corresponds more closely t o  the situations considered In the 

standard treatments of non-equilibrium statistical mechanics, 

These results may then be applied with very little modifi- 

cation to the present problem. 

We therefore choose to represent the cosmic distri- 

bution as a uniformly expanding, statistically homogeneous 
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and isotropic distribution of mutually gravitating point 

particles. As we shall later see the continuum limit is 

adequate for the description of clustering at large dis- 

tances, the only region in which the purely gravitational 

theory is valid In any case. It Will therefore be unneces- 

sary to identify the particles of the distribution with 

specific physical entities such as molecules or stars. In 

the f inal  results no reference to the nature of the partl- 

cles will appear. We may In fact make the assumption that 

the particles are all of equal mass when the resultant 

simplification becomes sufficiently profitable. 

11. T€E CO-MOVING COORDINATE SYSTEM 

Consider now the equations of motion of the point 

particles. Let Sj and Mj be the position vector and mass 

respectively of the jth particle. Let 0 denote the gravlta- 

tlonal constant. The Newtonian equations of motion are then 

Equation (12) is valid of course only in an Inertial 

coordinate system. In such a system the universe is, on the 

average, in a state of uniform expansion. Since in an 

expanding universe one and only one point may be at rest 

with respect to any inertial frame all regions of the 

(r 

T ------ - 
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universe a re  not equivalently treated,  It wi l l  be convenient 

t o  introduce a new set of coordinates which expand with the  

mean motion of the universe. In t h i s  system all points will 

be on an equal footing. 

L e t  z(t) be the i n e r t i a l  coordinates of a represent- 

a t ive  point of the smoothed out or averaged dis t r ibut ion.  

T h i s  d i s t r ibu t ion  i s  uniformly expanding and so one may 

choose an i n e r t i a l  freme whose or ig in  is a t  rest with 

respect t o  the local matter, In t h a t  case one has the  follow- 

i n g  re la t ion.  

R ( t )  I s  ca l led  the expansion parameter 

equal t o  u n i t y  a t  time t,, the  time a t  

t i ons  a re  t o  be imposed. 

and I s  defined t o  be 

which In i t i a l  condl- 

We shall now define a new s e t  of p a r t i c l e  coordinates 

by t h e  r e l a t ion  

If the Fj are  held constant the -fj simply follow the univer- 

s a l  expansion. The 7 are thus co-moving coordinates. L e t  j 
us a l s o  introduce a new time-like variable 8 defined by the  

following d i f f e r e n t i a l  equation and i n i t i a l  condition. 
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Substituting these new variables into equation (12) one 

obtains the transformed equation of motion. 

In order to simplify the second term on the right hand side 

onemust consider the time dependence of R. 

Newtonian gravitational theory cannot deal consist- 

ently with infinite, homogeneous distributions of matter. One 

must therefore appeal to general relativity to provide a 

specification of R(t). The appropriate solutions of the 

field equations are the Einstein-Friedmann solutions, given 

for example by Landau and Lifshitz (3). 

Consider the solution corresponding to a pressure- 

free or dustlike distribution of matter. Let D be the dis- 

tance between two particular dust grains, If this distance 

I s  small compared to the average gravitational radius of 

curvature of the universe it I s  a consequence of the 

Elnstein-Friedmann solutions that I) obeys the equation 



This is precisely the result obtainable from the Newtonian 

theory by considering the distribution of dust t o  be finite 

and spherical in shape. Neither the radius of the sphere nor 

the location of its center matters, It is merely necessary 

that the two dust particles under consideration lie within 

it, We see then that Newtonian theory is applicable to an 

infinite distribution if the distribution is regarded as the 

limit of concentric spherical distributions of equal mass 

density as their radla tend t o  infinity, 

It has been shown by Irvine (4) that in a universe 

In which the irregularities are characterized by a scale 

length small compared with the average gravitational radius 

of curvature, and in which the f1wtuating part of the 

velocity field is small compared with the speed of light, 

Newtonian gravitation provides an accurate description of 

the development of the Irregularities, Relativity need be 

Invoked only to specify tho correct limiting proceedures 

for the interpretation of such qumtities as the average 

force on some particle due to all other particles, quan- 

titles wNch are otherwise not well defined, 

Returning for the moment to the inertial). coordinate 
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system and ordinary time, let s(t) be the inertial coordi- 

nates of a point co-moving with the average local distri- 

bution of matter. Since the infinite universe may be thought 

of as a limit of spherical distributions of matter, each 

concentric with the origin, and each of the mme average 

density, the equation of motion for ?(t) I s  simply 

where y(t) is the average density a t  time t. Substituting 

equation (13) we find 

Now from mass conservation we may conclude 

Returning to the variable s and substituting equation (20) 

I n t o  equation (19) we obtain 

Substituting this result Into equation (16) we finally 

obtain 

The first term on the right hand side of this equa- 
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tion is of the form of a sum of Newtonian forces with the 

peculiar difference that the gravitational constant is 

multiplied by the expansion parameter R. We may consider the 

combination R ( s ) G  to be a new gravitational constant which 

3s now an explicit function of the time. 

To interpret the second term note that if RQ is 

considered to be the new gravitational constant this term I s  

of the form of the gravitational field interior to a uniform 

sphere of density -B(O) centered about the origin. Again 

considering the universe to be the limit of such spheres 

we see that this second term represents a negative back- 

ground force due to a distribution of negative mass equal In 

magnitude of density t o  the average density of real mass at 

time to. Eht in the co-moving system the density of real 

mass is constant. Thus the negative background mass compen- 

sates for the average distribution of real mass Indefinitely, 

This I s  of course perfectly reasonable. In the co-moving 

frame we have transformed away the decelerating expansion. 

Yet the first term on the right hand side of equation (22) 

1 s  of the same form as the original force. Therefore we 

must have introduced a negative background to cancel the net 

attraction of the gravitating particles. 

Before leaving this chapter I t  will be useful, to 
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investigate the behavior of the expansion parameter as a 

function of s. To do this we Integrate equation (21) twice. 

The first Integration y i e l d s  

The second integration yields 

Since we require that R(O)=l it follows that c2=-l. 

The combination bdP(0) appears repeatedly in the develop- 
ment to f o l l w ,  It is therefore convenient to adopt the 

not at ion 

This combination of constants plays a role In the gravlta- 

tlonal problem analogous to that of the square of the plasma 

frequency In the theory of plasma waves. This latter quantity 

i s  given by 
2 

+ ~ n e ' / m  = a,, 1 
(26) i 

where n is the number density of electrons and e and rn are 

the eIectronic charge and mass respectively. It I s  useful 

also to express q, In terms of a ratio of Immediate physical 

I 

s i g n l f  lcance. 
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At the initial time to select some member of the 

sequence of spherical distributions whose l i m i t  is to be 

taken as the Infinite universe. Suppose the radius of that 

distribution t o  be a, The distrfbution has kinetic energy 

of expansion T as w e l l  as gravltationdt energy V. These 

quantities a r e  easily found to be 

and 

Letqbe the ratio of the t o t a l  energy to the gravitational 

energy. 

Note that o( is indopendent of the radius a. The constant 

c 1  may now be expressed in terms of a( 



c , =  mq- 

Combining equation (30) with equation (24) we find 

We may distinguish three cases depending upon whether 

a( 3s pasittlve, hegative, or zero. These cases are presented 
graphically on the followlng page. Case i corresponds to the 

Einstein-Friedmann cosmological solutions which are spa- 

tially finite and positively curved. Case ii corresponds to 

the solution which is spatially infinite and flat. Case ti% 

corresponds to the solutions which are spatially infinite 

and negatively curved. In the second two cases only those 

portions of the curves that can be reached continuously from 

s=O have physical significance. 

Observational evidence does not yet permit a choice 

to be made between the three possible cases. The flat uni- 

verse appears most favorable to the development of irreg- 
ularities along the lines suggested by the Rypothesis of 

gravitational clustering. Consider a small spherical region 

in which the density is slightly greater than the average 

value. If this region is sufficiently isolated from the 
other irregularities so as t o  evolve independently It Will 

. 
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attain a minimum density and then fall back on itself. On 

tho other hand the average density Will approach zero asymp- 

totically. Therefore the density contrast due to even slight 

initial irregularities will become very large. 

It is also aesthetically satisfying to believe that 
the cosmological solution describing the actual universe 

is particularly simple, In a fully relativistic treatment 

the first and third solutions require a specification of 

an average radius of curvature, something not required of 

the second solution, This requirement of an additional 
parameter is usually obscured by writing the solutions in 

terms of dimensionless coordinates in which the radius of 

curvature is taken as the characteristic length. 

In any event none of the following work depends 

upon which cosmological solution actually obtains. 

I 

1 
I 
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"E STATISTICAL IIESCRIP!I!ION OF CLUSTERING 

It is clear of course that because of the large 

number of particles involved a statistical treatment of the 
present problem is required. In such a treatment the unl- 

verse is to be regarded as a particular realization of an 

ensemble of possible universes. Of course since the actual 

universe is quite unique the only averages having observa- 

tional significance are space averages. Nevertheless, the 

introduction of the ensemble concept is natural for the 

following reasons, 

Suppose one is given an exact description of the 

state of the universe at some initial time. One tends to 

divide this information into a part describing the gross 

structure, comprising such data as the density averaged over 

sufficiently large regions, and a part describing the details 

such as the precise arrangement of stars In individual 

gaLaxies. One intuitively expects the macroscopic information 

to be self-determinate. That is, If one is given two un l -  

verses which are macroscopically equivalent but different 

In the details of their construction, this macroscopic 

equivalence should persist in the course of their evolution. 

As a practical matter one cannot Rope t o  obtain a 
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detailed description of the present state of the universe. 

Consequently. one cannot do better than use the Information 

available to characterize an ensemble of possible uniVerses 

consistent with this information, 

Finally, if the correlations between the irregular- 

ities of the cosmic distribution diminish sufficiently 

rapidly with increasing distance remote regions of space 

are statistically independent. Since the probability dis- 

tribution is assumed statistically homogeneous such regions 

may be regarded as independent realizations of an ensemble. 

For tNs reason averaging over all space may be regarded a8 

equivalent to averaging over the appropriate ensemble. The 

Birkhoff OKhintchine ergodic theorem ( 5 )  provides formal 
verification of this assumption. 

For the foregoing reasons one I s  led to consider the 

evolution of ensembles of macroscopically similar universes. 

One must, however, define the concept of macroscopic equiv- 

alence somewhat more precisely. 

In the study of plasma waves for example one adopts 

the viewpoint that variations on the scale of the wavelength 

are non-random. Thus, the average of the density over dis- 

tances which are small compared t o  a wavelength but large 
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compared to the mean interparticle distance is considered to 

be a macroscopic feature of the distribution, An ensemble 

incorporating this viewpoint is constructed of represent- 

atives which are all similar on the scale of the wavelength. 

On the other hand in studying homogeneous turbulence 

one views the turbulent eddies themselves as stochastic 

entities. In this case only quantities averaged over all 

space are considered to be m8croscopIc. Ah ensemble incor- 

porating this viewpoint is constructed of representatives 

which may be quite different on the scale of the individual 

eddies but which give substantially equal results upon 

averaging over all space. 

The first viewpoint may be called the fine view. It 

is appropriate to situations In which recognizable regular- 
ities exist on some scale of length which is large compared 

to the mean Interparticle distance. The second viewpoint may 

be called the coarse view. It Is appropriate to situations 

of gross statistical homogeneity, Both views are handled 

formally in the same way. One merely chooses different 

ensembles in the two cases, 

On the whole the coarse view 2s more appropriate to 

the cosmological problem and W I L L  therefore be adopted. 
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I. THE DISTRIBUTION FUNCTIONS 

Let us again consider the universe to be the limit of 

a distribution of N particles in a volume R a s  I? and R 

tend toward infinity while lVD =C remains fixed. The state 

of such a system is given by specifying 6N variables, the P 
position vectors and the If velocity vectors, These may be 

considered t9 be the coordinates of a representative pitint 

in the phase space of the system. A statistical specification 

of the state of the system consists of assigning a probabl3.- 

ity to each subset of the phase space, We will assume for 

convenience that these probabilities are derivable from a 

density D, the Liouville probability density, 

Recall now that In the original inertial system the 

position and velocity of the Jth particle were denoted by 
4 

x j  and 3 

y3 defined by 

We had a l s o  introduced the co-moving coordinates 5' 
A 

We may also define a velocity-like variable In the co-moving 

frame. 
4 
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To see the physical significance of ZJ note that the 

average velocity of expansion of the substratum I s  given 

bs 

where H is Hubble's constant. Since 

we see that 23 is the peculiar velocity scaled by R(s). 

The state of the system of N particles may now be 

described by the quantities (~~...~N,~~...~). It will be 

convenient to use an abrevlated notation. We Will write 

eta. The probability that the representative point of the 

system is to be found in the region dydz about (y,z) is 

then given by D(y,z)dydz. Since this probability is normal- 

ized we require 

. 
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0 satisfies the Liouville equation. Letting ?, be the  

t o t a l  force on the j t h  p a r t i c l e  t h i s  equation I s  

A t  t h i s  point we w i l l  l i m i t  the discussion t o  systems 

of p a r t i c l e s  of ident ica l  mass, T h i s  is not a ser ious l l m i -  

t a t i on  because we a re  primarily interested In  c lus te r ing  on 

a scale  of length much larger  than the mean i n t e r p a r t i c l e  

distance. In t h i s  l i m i t ,  as we s h a l l  l a t e r  see9 the dynamics 

of the  system are  Independent of the  par t icu la te  nature  of 

the dfstsibution. We might mention however that one can 

t r e a t  the pa r t i c l e s  as equivalent and s t i l l  allow for a 

var ia t ion  in  the individual p a r t i c l e  masses by t r ea t ing  the 

mass of each p a r t i c l e  as a random variable with a probabil- 

i t y  d i s t r ibu t ion  independent of the p a r t i c l e  index, In tha t  

w a y  the  system's s t a t e  would be described by 7N variables ,  

the addi t ional  N variables being the p a r t i c l e  masses. D 

would then be a probabili ty density In the 7 N  dimensional 

extended phase space. 

Now the acceleration of the J t h  pa r t i c l e  i n  the coo 

moving frame I s  given by equation (22). Let the  constant 

p a r t i c l e  mass be M and note t h a t  B(0) may be written 
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(38) 

where C is the t i m e  indepemant number density of p a r t i c l e s  

in the co-moving frame, Llouville's equation I s  thus 

rewrit ten as 

where the two-particle force exerted by p a r t i c l e  k on par- 

t i c l e  j has been denoted by 

' and the single-particle background force by 

The prime over the  second swaa t ion  indicates  that the terms 

j=k are  to be omitted, 

The probabili ty density D obeys a single  l i n e a r  

equation but one impossible t o  solve in any generali ty 

because of the large number of Independent variables,  It I s  

c lea r  however that we r ea l ly  do not w a n t  a l l  of the infor- 

mation contained i n  D. The quant i t ies  which we may consider 

as macroscopic are all averages of sums of terms depending 

on only a few p a r t i c l e s  a t  a time. Consider two such quan- 

t i t i e s  which play a ro l e  In  the present problem. 
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In his continuum treatment Layzer introduced a quan- 

tity Tm which is one half the mass averaged square of the 

peculiar velocity. Tm I s  called 

per unit mass and is defined by 

the peculiar kinetic energy 

(42) 

In the present particulate description we may define as 

(43) 

T N s  is a sum of terms depending on one particle at  a time. 

The total specific binding energy has been defined as 

In the particulate description 
M L  

I ;i-Til 

this becomes 

> - -LW 
e 

R PJ 4'3' 

T h i s  I s  a sum of quantities depending on two particles a t  

a time. 

In general let A be a sum of terms depending on n 



3 
particles at a time, 

where the summation extends over all ways n indices may be 

chosen from IV without regard to order and a is a function 

which is symmetric in all particle indices. The average 

value of A I s  then given by 

Here we have assumed, as will always be done, that the 

probabil i ty  density is symmetric in all particle Indices. 

Let us. now adopt the abreviated notation 

. .N) 
a particle index appears as the argument of a function I t  

is to be understood as representing both the corresponding 

velocity and coordinates. We now define the 

* djijdzJ -d( j) etc. Whenever a(~leeeyN,z~e..zN)-5a(~ + 4  

the 

How for fixed n 

ab 



Thus, for large N we may write 

( A ) :  < f 5'~ ' (1  ...ur) a(1 ...n ) d O J . .  d e )  
n. 
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(49) 

Let us now note some important properties of the 

distribution functions. Since D is symmetric in the particle 
indices 1 through N f(n) is symmetric In the indices 1 

through n. As n increases fen) represents an increasingly 
fine description ajf the statistical state of the system. 

For n l z n  all the information contained in f (n) fs contalned 
in also. The distribution functions are not independ- 

ent but are connected through the following relation. 

for arbitrary displacements a. The distribution functions 

are s imilarly homogeneous. 
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Consider a group of n particles distributed In two 

1ndividually.compact subgroups. Let particles l...nt form 

one subgroup and particles nt+l...n the other. If the 

separation of the subgroups is large we may reasonably 

expect the subgroups to be statistically Independent, That 

is, we expect the distribution function for the n particles 
t o  factor. 

We will in fact assume the rate of factorlzation to be 

sufficiently rapid so that the following integral relation 

holds. 

To derive a s e t  of equations for the distribution 

functlons we multiply equation (39) by -cL" and Integrate 

with respect to ~n+L...~N,~+l...+ the first term is 

simply the derivative of f(n) with respect to S. Since the 

-3 

4 

distribution IS bounded in space integration over 's;n,. . O ~ N  

€ti tha Second term ellminates contributions corresponding t o  

j=n*l through j = N .  Similarly, in the last term we assume 

that the probability distribution I s  such that D vanishes 

strongly with Increasing peculiar velocity. Then Integration 

over . ZH w i l l  eliminate terms Corresponding t o  j =n+l 
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through j=N. Again, In the third term we have contributions 

only from j=1 through j=n. We may break up the summation 

over k into a part corresponding t o  kS n and a part corre- 

sponding to k7n. T h i s  last part m a y  be written as 

In the limit as N goes t o  infinity (NJ-n)/a goes t o  C, the 

particle concentration. In this limit the equations for the 

distribution functions are therefore gimn by 

This set of equations is essentially that known as 

the BBGKY hierarchy after its originators BogoIlcmbov, Born, 

Green, Kirkwood, and Yvon, 

11. TIB GLNXRATING FUTJCTIONAL 

A number of statistical problems of interest are 

handled most easily in terms of a generating functional. 

Let us define the generating functional Yeuj as follows. 
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is a functional of u(ylal an arbitrary function 

of a single position argument and a single velocity argument. 

It was first introduced i n t o  statistical mechanics by N. 8 ,  

Bogolioubov ( 6 ) -  Notice that the functional is an ensemble 

average of a certain function of the N positions and ?? 

velocities. Let us expand this function in powers of U. 

Each sum in this series i s  precisely of the form of the 

right hand side of equation (46). We may thus immediately 

apply equation (50) to determine the limiting form of the 

generating functional as N tends toward infinity, 

5 ( I .  .h) M U ( .  .u(n) Cut.. d b )  
tm ) 

(59) 

The distribution function f(n) is simply the coeff l -  

clent of the monomial functional of the nth degree in u 

divided by n! . We may also express this in terms of the 
functional derivatives of 

summarized in appendix A. One determines immediately from 

equation (59) that in the limit of large N the distribution 

functions are given by 

the properties of which are 
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Now depends on the time s through the distribu- 

tion functions. We may derive an equation for this time 

dependence by differentiating equation (59) with respect to 

s and then substituting equation ( 5 6 ) .  Invoking the symmetry 

of the distribution functions with respect to Interchanges 
of particle indices we obtain the following result, 

This equation may be expressed in terms of the first two 

functional derivatives of . 

and 

I 
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Another interesting functional, one which has been 

employed in the theory of random fields, is the character- 

istic f’unctional of Hopf (7). This functional was applied 

originally to the study of hydrodynamic turbulence. 

Suppose fl(y,z) is the density in position-velocity 

space of a distribution of matter. The characteristic func- 

tional associated with p I s  defined to be 

The n-position, n-velocity correlation functions are then 

expressible in terms of the functional derivatives of 4 
evaluated at -0. 

In particular one may express the physically interesting 

two-point density correlation function as 

Let us now establish the connection between the 

characteristic functional for a distribution of mass points 

and the corresponding generating functional. For LL collection 

of mass points at positions $le..& with veXocities ~ . O . z ~  

%he Z’bmtLon p I s  given by 



Therefore 

j: I 

We see that the characteristic functional is obtained from 

the generating functional by a simple change of variables. 

111. TIE CORFUIATION FUNCTIONS 

Another set of quantities which describe the cluster- 

ing of particles are the correlation f'unctions,sometimes 

known as the Ursell-Mayer functions. These are constructed 

from the distribution functions but seem in a number of 

ways to be more fundamental. One indication of this is that 

the correlation functions are independent quantities whereas 
the distribution functions are not. Also, as calculation of 

these two s e t s  of functions for specific models Will later 

Indicate, the correlation functions are  often the simpler 

in form. In particular, as the calculations based upon a 
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model of independent clusters will indicate, If the highest 

order correlations involve n1 particles the n-particle 

correlation functions all vanish for n>nl. 

Let us denote the n-particle correlation function by 

g(n)($l...yn;Zl.. .%)=g(n)(l ..a). l!he correlation Functions 

may be defined recursively in terms of the distribution 

functions as follows. 

etc. In general each of the f(*) is expressed as a sum of 

terms, each term corresponding to a different partition 

of the set of indices It... no 

The expressions for the f(n) given in equations (66) 

are closely related to the cluster expansion of equilibrium 

statistical mechanics. The first applications of this expan- 

sion to kinetic theory appear. to have been made by M. Green 

(8) and &out (9). Green In particular strongly emphaslzed 

the independence of the correlation functions. 
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It I s  common practice t o  denote the single-particle 

velocity distribution function by the symbol # . If the 
single-particle distribution function depends on position 

as well as velocity the velocity distribution function 

is defined t o  be 

In the present case the cosmological principle dictates 

that f(") is independent of position. Therefore 

In order to facilitate the investigation of the 

properties of the correlation functions it I s  useful to 

first obtain their generating functional. Let ALu3 be 

the natural logarithm of JLQl 
ing functional. The first three f'unctlonal derivatives of 

the distribution generat- 

&] m a y  therefore be expressed as 



Note that 

Evaluating equations (70), (71) and (72) at u=Ot substitut- 

ing for the derivatives of 2 the corresponding distribution 
functions, and then solving for the derivatives of A with 

the aid of equations (66) we obtain 

It I s  not difficult to convince oneself that in gen- 

eral the following relation holds. 

A then is the generating functional for the correlation 

functions. 

One of the reasons mentioned for considering the 

correlation functions to be more fundamental than the distri- 

bution functions is their independence. This m a y  be seen a8 

follows. 



42 
As we have seen the various distribution functions 

are not independent since they must satisfy the identity 

Let us express t h i s  identity In terms o f  the correlation 
functions. The most convenient way of doing this is to 

proceed by way of the generating functional. Consider the 

following gdentlty satisfied by the generating funotlonal 

Y L 4 .  

!&is Identity i s  precisely equivalent to the set of equa- 

tions (78). Expressed In terms of A the Identity becomes 

Evaluating equation (80) at u=O we find 
/ 
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which is not surprising since g(l)=f(’) 

ability density. Differentiating equation (80) n-l times 

and then setting u=O we find 

a normalized prob- 

Equation (82) represents equation (78) expressed in 

terms of the correlation flznctions, We see that the Sdentity 

now affects the various g(n) separately; it does not couple 

them. The correlation functions are, in this sense, inde- 

pendent, Their independence is not quite complete however. 

Since the distribution functions are essentially probability 

densities they are necessarily non-negative. Thus, each of 

the right hand sides of equations (66) are constrained to be 

non-negative, This set of inequalities obeyed by the g b) I 

limits their complete independence, 

Since the distribution functions depend upon the time 

through the dynamics of the system so too do the correlation 

functions. We shall now derive the equations governing this 

time dependence, Let us therefore substitute In equation 
(61) the expressions (70) and (71) to obtain first the 

equation for A b 3  , 



To obtain the equations for the correlation functions 

we merely differentiate t h i s  equation n times with respect 

to u(l)e.eu(n) and then set U=Oe In carrying out t N s  dlf- 
ferentlation it is best to replace the dummy variables 

yl* ?*P ;19 and 22 appearinc in equation (83) by Yn+.p 3m+2, 

ments of g(”)(le e .n). Then, using the properties of the 

functional derivative given in the first appendix, the 

n-fold derivative of equation (83) I s  easily calculated. The 

equations f o r  the correlation functions are found to be 

4 3 

-4 

and %+2 so that no confusion arises with the argu- ?l+l 

Cn-n) where the quantity c ’$?!&.)? (. , A .  .) 

of products of pairs of g’s ,  each product corresponding t o  

a partition of l.,.n into two subsets, one containing the 

represents a sum 
? 
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index 3 and the other containing the index k, For example, 

i f  n=b, j = l ,  and k=2, the  summation i s  e x p l i c i t l y  given by 

Similarly,  the other such summation €n equation (84) cor- 

responds t o  p a r t i t i o n s  of the s e t  l,,.n+l In to  two par t s ,  

one p a r t  containing the index 3 ,  the other containing the 

index n+l,  

Now, the  two-particle force 

p a r t i c l e  background force '(1) F are 

$2) and the single- 

connected through the 

requirement tha t  the  background force j u s t  compensate f o r  

the average sum of two-body forces. Since the average 

density of pa r t i c l e s  i s  C this relat ionship may be expressed 

as 

One eas i ly  v e r i f i e s  t h a t  for the forces given by equations 

(40) and (41) t h i s  re la t ion  holds providing the correct  

l imi t ing  proceedure is used, 

We may now use equation (86) together with the 

requirement tha t  the s ingle-par t ic le  correlat ion function 

be independent of position t o  simplify equations (84). Con- 

s ide r  the  l as t  term of these equations, In  the summation 

over par t i t i ons  of L,,,n+l there  I s  a contribution of.tha 
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form g(n)(l, .n)p('+n+l) , Evaluating the contribution t o  

the last term of equation (84) from this product we find 

T h i s  term just cancels the third term of equation (84), We 

may thus rewrite that equation as 

where the prime over the second partition sum Indicates 

that the term g(n)(l...n)g(l)(n+l) is to be omitted, 

Let us note that since the force ?(*) I s  linear in 

the particle mass M, in the continuum limit (M-0,  Caw, 

MC=constant) the third term of equation (88) vanishes 
while the fourth term survives, The third term of the equa- 

tion l s  therefore the part that describes relaxation due t o  

close encounters, 

Before leaving this chapter let us turn t o  the 
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expression of T,, the specific peculiar kinetic energy, Urn, 

the specific peculiar binding energy, and a ( k ) ,  the 

clustering spectrum, in terms of the correlation functions. 

The speclflc peculiar klnetlo energy was given in 

equation (44) as 

This average is computed according to the general prescrlp- 

tion of equation ( 5 0 ) .  

Using the notation of equation (61) we obtain 

Consider now the total specific binding energy. This 

is given by equation (45) as 



In the limit of infinite volume the last term of 

equation (92 )  diverges. Nevertheless, since I t  is independ- 

ent of the clustering we shall regard It as the zero point  

of the potential and consequently ignore it, The remainder 

will be called the specific peculiar binding energy 

(93)  

Let us note that equation (93) does not quite coin- 

cide with Layzer's definition given by equation ( 6 ) .  In the 

first place his definition is Inapplicable to a particulate 

distribution since for such a distribution the mean square 

of the density fluctuations I s  infinite. Another difference 

is that Layzer's peculiar binding energy is always non- 

positive. This nay be easily verified In terms of the 

Fourier transform of the peculiar part of the density. T h i s  

transform exists for finite f2. although I t  is not defined 

in the limit of infinite volume. 
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U the peculiar specific binding energy defined by m 
equation (93) vanishes for a Poisson distribution (or indeed 

for any distribution in which two-particle correlations are 

absent) but may otherwise take on either sign. In any event, 

although the peculiar binding energy defined here differs 

from Layzer's it will be shown In chapter V that Urn and 

T, satisfy the same energy equation first derived by Irvine 

(4) for Layzer's quantities. 

We wish also to define a clustering spectrum appro- 

priate to particulate distributions. In order t o  obtain a 

quantity closely corresponding to Layzer's spectrum as given 

by equation (8) let us express the peculiar binding energy 

In terms of the inertial coordinate 2 Instead of the co- 



moving coordinate y. 

The clustering spectrum w i l l  be taken to be proportional 

to the Fourier transform of the quantity in parenthesis in 

the equation above. 

Let 

Then 

The constant is evaluated by requiring that a ( k )  like 
JL(k) integrate to unity. 

( S ’ ( a , d j i  = f w  
- ea, 

< 3%) - 

= \  

(99) 



Bote that because of t h e  assumption of statistical Isotropy 

4 (k) depends on the magnitude of but not its direction, 

The peculiar binding energy is expressed in terms of 

the clustering spectrum as 

In the co-moving coordinate system I t  is probably 

more convenient to deal with a somewhat differently normal- 

ized clustering spectrum, 

Thus 
c r 3  

In terms of this quantity Urn 1s given by 

. 
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c- IV 

CLUSTERING MODEZS 

Before proceeding t o  the d i f f i c u l t  problem of the 

ac tua l  dynamical evolution of the correlat ion functions I t  

i s  usefu l  t o  f i rs t  gain a somewhat deeper understanding of 

t h e i r  nature. For t h i s  reason we now turn t o  the study of 

pa r t i cu la r  s ta t  is t i c  al dis  t r i b u t  Ions. 

I. THE GUNERAL1ZE.D POISSON DISTRIBUTION 

Consider f i r s t  a d is t r ibu t ion  of p a r t i c l e s  construc- 

ted in the following manner. Let p(3,g) be a definite f'unc- 

t i o n  of posi t ion and velocity satisfying €he normalization 

condition 

Let the  probabili ty density of finding any specified p a r t i c l e  

a t  the location f with the velocity 5 be p@,"z)/_n I inde- 

pendent of the index of the pa r t i c l e ,  If the scale  of spa- 

t i a l  var ia t ion of p fs large compared t o  the mean i n t e r -  

p a r t i c l e  distance almost all rea l iza t ions  wi l l  correspond 

t o  the usual. concept of a spa t i a l ly  uncorrelated dlstrlbu- 

t i on  with an average density lVp(f ,a)b = Cp(?,?). For such 

d is t r ibu t ions  t h e  generating functional I s  very eas i ly  

calculated. In the l i m i t  of large IV we have the  following. 



53 

Now since 

we may immediately identify the correlation functions as the 

coefficients of the various powers of u in the exponent of 

the functional. Thus, in the present case 

$’(Y,J 2,) 2 fT VI,  6,) 

The distribution just  described does not embody the 

cosmological principle because different points in space 

are treated differently. we may remedy this defect by 
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treating p(T,d) itself as a statistically homogeneous and 

isotropic random field. The distribution of particles I s  

now to be thought of as being constructed in two steps. 

First a function ~(7,;) is selected from tu1 ensemble of 
such functions and then the particles are independently 

distributed with a probability density given by the partlc- 

ular function chosen. 

The generating functional for t N s  generalized 

Poisson distribution is obtained by averaging equation (107) 
over realizations of p. 

Eut p, being a random field, has associated with it a 

characteristic m c t i o n d  + l w 3  . 

Therefore the generating functional of the particle dlstrl-. 

bution and the characteristic functional of the random field 

p are related by 

It was mentioned in the last chapter that the pecul- 

iar binding energy given by equation (93)  may, In general, 
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take on e i the r  sign. For the generalized Poisson dis t r ibut ionr  

however,Um i s  never positive. To see this we s p l i t  p(j?,%) 

i n t o  its average p a r t  F(z) and a part E(p,z) the average 

of which vanishes. The o n e p a r t i c l e  and two-partlcle dlstrl- 

bution functions are  then 

and 

The two p a r t i c l e  correlat ion function I s  

Finally, the  quantity U, may be writ ten 

If the correlat ions of p are of f i n i t e  range the 

ensemble average of equation (115) may be replaced by a 

space average and the  specif ic  binding energy W i l l  then be 

precisely of the  form of equation (94). We then conclude 

t h a t  i n  this case U, i s  non-positive. 

One in te res t ing  special izat ion of t h i s  generalized 

Poisson model r e s u l t s  from t h e  choice of p as a Jo in t -  

* . 
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Gaussian random f i e l d  (appendix B). This is not strictly 

permissible for with a Gaussian distribution there is a 

finite probability that g will assume a negative value a t  

any given point. Since p is to be a probability density 

this I s  clearly inadmissible. Nevertheless, If the fluctu- 

ations of p from its mean are  sufficiently small compared 

t o  5 this objection cannot be of practical significance. 

As is shown In appendix B the characteristic func- 

tional for a joint-Gaussian random field is 

The generating functional for the distribution of particles 

is thus 
J Fc t) u c, )J Q 1 + +J< Rd i% E)> uc' UCr 1 dQ 1 d rz 1 

GYLu3: e (117) 

and we conclude that for this model the correlation flunc- 

tions are 



11. HIEZURCHICAL CLUSTEFUNG 

We have already seen in chapter I how hierarchical 

distributions play a special role in the hypothesis of 

gravitational clustering, For tN8 reason we s h a l l  now 

study an idealized and simplified model of such dlstrl- 

butlons. It seems rather appropriate t o  take the particles 

of this distribution to be stars. 

Let each of the N stars belong to an n-ember cluster 

of stars. Let each of these clusters belong to an nhnember 

cluster of clusters or supercluster. Finallyr let the super- 

clusters be randomly distributed in space. The stars, 

clusters, and superclusters form a three-level Nerarchy. 

We wil l  denote the position and velocity of the jth s t a r  

by y, and zJ (j=l..H) , the position and velocity of the 
center of the kth cluster by F'k and %'k, (k=l..N'=N/n) p 

and the position and velocity of the center of the mth 

supercluster by ?lVm and Pm, (m=l, .Nn=N1/nl) , 

Let P('y,z I y' ,z') be the conditional probability 

density for the distribution of stars given the distribution 

of clusters. Let P'(y',z'l yn,zn) be the condltlannl proba;. 

biuw density for the distribution of clusters given the 

distribution of superclusters. TBe unconditional probability 

r, . 
- -.- . . . 
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density for the stars Will then be given by 

Let the conditional probability density for finding 

a particular star at 3 with velocity 3, given that the 

center of the cluster to which It belongs is at 3' with 
velocity 3' 
flmction and is Independent of the particular star and 

cluster chosen. Let us assign stars I..n to  cluster 1, stars  

n+1,.2n to cluster 2, etc,, The conditional probability 

density for the distribution of stars given the distribution 

of clusters I s  then 

& a  be F(f-7' , Z - Z * ) .  F is to be a universal cluster 

where 

In precisely the same way we shall write the condl- 
tional probability density for the distribution of clusters 

given the distribution of superclusters as 



where 

i 

! 
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and where F' is the universal supercluster function. 

Finally, we assume the superclusters to be lndepend- 

ently distributed with a probability density which depends 

only on their velocities, 

With the aid of equations (119)* (120)* (122), and 

(124) we may now construct the generating functional for  

this distribution, 

To carry out the 7 and integrations note that the 

integrand is symmetric In those 7~ and 21 corresponding to 
the same values of k, Similar remarks hold for the 7' and 2' 
Integrations also,  

' 
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where we have used the notation 

for the binomial coefficients. 

Now, since 
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and since 

in the limit of large Nn the functional d h ]  becomes 

Note that this functional I s  exponential in form, 

Thus A, the generating functional for the correlation 

functions is simpler in form than d the generating 

functional f o r  the distribution f'unctions, Let us deal then 

with A. 

We mentioned in chapter I11 that if the highest order 

correlations involve rn' particles the m-particle correlation 

functions vanish for m7m'. In the present case since there 

are exactly nne stars per supercluster that I s  the largest 

ab 
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number of stars that can be correlated. If we examine the 

functional A we find it to be a polynomial of order nn'. 

Thus we Indeed verify that for this model g(p)=O for p>nn'.  

It is instructive to consider a special case of the 

present model, the limit of simple clustering. If we set 

the number of clusters per supercluster equal to one, and 

then demand that the cluster associated with a given super- 

cluster be located at the supercluster center with zero 

relative velocity, the clusters will be independently 

distributed with a velocity distribution given by F". We 

obtain the generating functional for the correlation functions 

in this limit by setting n'=l and Ft(?' ,2')= 6(yt)  6 ( z t )  in 

equation (131) 

Now, in general 

Comparing equations (132) and (133) we may immediately read 

off the correlation functions. 
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In the more general. situation described by the full 

functional of equation (131) the expressions for the correl- 

ation functions are a good deal more complicated, This I s  

because the entire summation over 1 is raised to the pth 

power and the powers of u appear in a complicated way. Rather 

than go through the unrewarding process of deriving the 

general expression for the correlation functions we Will be 

content to explicitly determine only the first two. These 

are in any case the most impo2tant physic-. Let us there- 

fore refer to equation (131) and extract the terms of first 

and second order in U. The first order term asises from the 

contribution of 

one from f=2 ,  p=l and one from I=l, p=2. 

t=p=1, There are two second order terms, 
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We may read off the first two correlation functions 

by comparing equations (133) and (135). 

We have seen that S(k), the Fourier transform of the 

velocity integrated two-particle correlation f'unctlon, 

describes the distribution of peculiar binding energy in 

Fourier space. Let us calculate this quantity for the pres- 

ent model. 

To begin we define two quantities. 

g ( g )  is essentially the average density profile of a 
cluster and &?I) is the  corresponding supercluster 

quantity. The velocity integrated two-particle correlation 

function is easily expressed in terms of these density 

profiles. 



Writing this equation In terms of the difference coordinates 

$fl-72 and then taking the Fourier transform with respect 

t o  7 we obtain 

The last step follows from the reality of the profile 

functions. 

To this point the cluster and supercluster shapes have 

been l e f t  arbitrary. For the sake of definiteness let US now 

take them to be spherically symmetric with Gaussian radial 

dependences. 
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where the constants are to be chosen so that 8 and 9' 

integrate to unity. Ac is the characteristic cluster dimen- 

sion and hs is the corresponding supercluster quantity. The 
Fourier transforms of these shape functions are 

This function is graphically Illustrated on the next 

page. Note that it is not characterized by peaks at k = l / A c  

nd k=l/ As, Thus, even a precisely hierarchical distribution 

is not necessarily characterized by a sharply peaked cluster- 

ing spectrum, 
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nn' -: 

FIGURE 2 

THE CLUSTERMG SPECTRUM S(k) 

FOR A TEIREE-LE= HIERBRCHICAL DISTRIBUTION 



CHAPTER v 

TBE DYmAMICS OF CLUSTERING 

Up t o  this p o i n t  we have said nothing about, the solu- 
tions of the equations of motion for the correlation func- 

tions. Recall that these equations are 

where 

These are an infinite set of coupled, non-linear, integro- 

differential equations. Although their general solution is 

clearly hopeless we may derive from the first two of them 

an exact conservation relation. We shall a l s o  investigate 

these equations in the limit of weak clustering and, in that 

limit, obtain a useful integral equation for the clustering 

spectrum. 

I. THE EmERGY EQUATION 

Let us recall the expressions for the specific 

peculiar kinetic energy Tm, and the specific peculiar bind- 

ing energy urn. 
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(145) 

We shal l  now derive a conservation equation for these 

quant I t ie s . 
Let us first explicitly write down the first two of 

equations (143) making use of the information that g (1) (f&) 

is actually independent of 71, that g(2) wl% ,5282) depends 

on the coordinates and y2 only through their difference 

Me now multiply equation (147) by 92/2 and integrate over 
4 The second term is to be integrated by parts and the 

surface term discarded since we assume g(2) vanished rapidly 

at large velocities, 



Next we divide equation (148) by 2y and Integrate over f ,  
21, and z2, Here the f integration I s  done by parts also,  

Again we neglect the surface term because g(2) I s  assumed 

to vanish strongly with increasing p. 

4 

Since g(2) I s  symmetric with respect to particle Indices 1 

and 2 

l 

1 0  a - *  
3 N ;  2,Q= $2’(-;;ze3, 1 (1D) 

Equation (150) may thus be rewritten as 

We now multiply equation (152) by MCGR and subtract I t  from 

equation (149). 

Or 

Now the time-like variable s I s  related to physical 

time t through equations (15) 



- d = R Z d  
ds dt 

Thus 

Or 

Where 

Equation (157) is the energy theorem first derived 
by Irvine (4) for a continuous distribution and in terms 

of Layzer's peculiar binding energy. One of the most sig- 

nificant features of this equation I s  that it is exact. It 

is probably the only exact result obtainable from equations 

of motion (143). 

11. THE WEAK CLUSTERING APPROXIMATION 

In order to proceed further with the solution of 

equations (143) we shall make two simplifying assumptions. 

The first of these is that the range of correlations is 

sufficiently great compared to the mean interparticle 

distance that the particulate nature of the distribution 
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does not appreciably affect the dynamics of clustering. In 
other words we shall assume the applicability of the con- 

tinuum limit. The second assumption is that the Intensity 

of clustering I s  weak and that a linear analysis m a y  there- 

fore be employed. 

Suppose the clustering I s  characterized by a cor- 

relation range i\ and an intensity t . & may be taken to 

be the contrast of density fluctuations in the more usual 

continuum formulation. The continuum limit of equations (143) 
may be expected to apply when the force on a given particle 

due to its near neighbors, 1.e. particles at a distance of 

order C -u3, is much l ess  than the force due to the densitp 

fluctuations. Thus, the condition for the applicability of 

the continuum limit is 

Or 

Since we shall assume the clustering to be weako and there- 

fore 6 to be smallp condition (160) is stronger that the 

mere requirement that there be many particles within a 

sphere of radius 2 . 
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As the clustering progresses E will Increase and 

most probably A will also. Therefore If Inequality (160) 

is initially satisfied it will  be satisfied for later times 

too, We may thus regard (160) t i s  a condition on the initial 

distribution. 

To obtain the continuum limit of equations (143) we 
4 

merely discard those terms Involving PJ,k, and therefore M, 

without a compensating factor C. Thus, in the continuum limit, 

equations (143) become 

We shall express the second assumption, that the 

clustering is weak, by demanding that f o r  nz2 g(n) be of 

order n in e . We may motivate this particular assignment 
of order in e as follows. 

It seems reasonable that, at least as far as the 

orders of magnitude of the various correlations are con- 

cerned, the weakly clustered distribution presently under 

consideration will be similar to a generalized Poisson 

distribution of chapter IV. Such a distribution may be said 



to be weakly clustered if 5 ,  the fluctuating part of the 

random field p 8  is small compared to F, the average part. 
We express tNs by writing 

v 

Now, the generating functional for the generalized 

Poisson distribution is given by equation (log) as 

Let us define a new Mctional A t  by 

A' presumably has a power series expansion. Therefore 

where the only dependence on & is shown explicitly. 

The first term of this series must actually vanish 

since by equations (112), (1631, and (164) 
- 
p 6 )  = 5%) 
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We may therefore write the generating functional as 

We see at once that the correlation functions are given by 

Since the only dependence on E I s  shown explicitly the 

order in G of the various correlations is as assumed. 

This assignment of order in E will be meaningful 

only if it is maintained by the equations of motion. It is 

necessary that the equation involving "'"' 33 have no terms 

of order en' where n'4n. If this is not the case g(n) 

will quickly &row to order 

(161) shows that in the continuum limit the equations for the 

1 

c"' .  Reference to equations 

correlation functions do indeed satisfy this condition. This 

I s  in sharp distinction to the more general s e t  of equations 

(143) Here for example the equation for g(2)(1,2) involves 
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8 term 

which is of the zeroth order In f Thus, even if g(2) is 

initially of order E it will quickly grow t o  order unity. 

Now,  consistent with the assumption of weak cluster- 

ing, we shall agree to retain terms of at most second order 

in 

equations (161). Written aut expllcltIy these surviving 

equations are  

e In that case we are left with only the first two of 

and 

Since the time derivative of g(') is of second order 

in 6 we express g(1) 8s 

$'cz, , 5 )  $(a -@ S'p G , s ,  (172) 

where g(t) is the zeroth order velocity distribution func- 
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tion and gil) €s the second order correction, @(t) I s  Inde- 

pendent of the time and is determined solely by the Initial 

conditions. Substituting equation (172) Into equations (170) 

and (171) we obtain 

and 

These equations are more conveniently expressed In 
terms of the spatial Fourier transform of g (2) . 

Recalling that 

and again letting 



We may also take the fourier transform of equation (1%) 

using the symmetry relation (In) to obtain 

It was mentioned in the Introduction that Layzer's 

principal conjectures concerning the development of the 

clustering spectrum were that highly developed regions of 

this spectrum tend to grow at the expense of less highly 

developed regions, and also that there I s  a general flow 

of binding energy from the large wave rnunber end of the 

spectrum to the s m a l l  wave number end, We notice however 

that k appears In equation (179) only as a parameter, Thus, 
to the accuracy of this linear analysis, the various parts 

of the clustering spectrum are Independent, We therefore 

conclude that the flow of binding energy envisaged by Eayzef 

is an essentially non-linear phenomenon and lies beyond the 

scope of this linear theory. One would hope to be able t o  

treat this energy f low in the lowest approximation by 

retaining In equations (143) terms of order and G4 too. 
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Such an analysis will be quite complicated and will not be 

attempted in this thesis. Rather, we shall continue with the 

linear theory, partly because the initial development of the 

clustering spectrum is Itself of considerable Interest, and 

partly because an understanding of the linear theory is c 

clear prerequisite of any non-linear treatment. 

111, AN INTEGRAL EQUATION FOR THE CLUSTERING SPECTRT;IM 

In order to derive a simple integral equation for the 

clustering spectrum it will prove useful t o  consider only 

those solutions of equation 

Initial conditions of the form 

(179) which develop from 

Here h and H are arbitrary fhnctions having appropriate 

symmetry. These initial conditions include as a special 

case distributions which are correlated in position only. 

Since the restriction applies only to the initial state 

and involves no assumption as to the time dependence of the 

correlations it appears that no serious loss of generality 

results, 

For the sake of clarity we shall henceforth explic- 

itly indicate all time dependence. 
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Substituting this definition Into equation (179) we find 
*)I.) asYcl.,a, 2 ,  5 )  

Consistent with the assumed initial conditions l e t  us seek 

solutions of the form 

where H(G) is time Independent. Substituting equation (183) 
into equation (182) we find 

We find that a solution does result provided h satisfies 

the equation 

We may obtain an integral equation for h by integrat- 

I 
. . -j - -. . -. . . .~ . . . . . 

~~ 
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ing equation (185) with respect to Sb 

- 4  Here h(k,z,O) is determined by the initial conditions. 

Now the quantity of 

ing spectrum S(k)b 

-ce, -.) + 2 (%;% 

principal interest is the cluster- 

.2", Js) dz, d2, 

Let 

To obtain an integral equation for 3 we multiply equation 
(186) by e-2.rrik*zs and Integrate with respect to 2. 

4 -  

(189) 

_- 

Let g($) represent the velocity Fourier transform of 
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The velocity integration on the left hand side of equation 

(189) may now be done by parts. 

+ a  
The quantities g(c), R(s), and h(krz,O) appearing In 

equation (191) are all known. This equation is therefore a 

Volterra integral equation of the second kind. Such equations 

are very well suited to machine camputation, 

IV. lQuMEBICAL COMPUTATION OF 3 

Consider now a general Volterra integral equation 

of the second kind. 
s 

Here K ( s , s ' )  and q ( s )  are known functions and are assumed 

bounded over the range of values of s which are of Interest, 

We wish to determine Y ( s )  for 0 4 s  L-s- 

Let us divide this domain I n t o  11 discrete increments 



of length A. L e t  

And l e t  

Evauating equation (192) at s=O we have 

We now convert equation (192) to an algebraic equation by 

approximating the integral by means of the trapezoidal rule. 

3, -. Ani K.nJ-t Ynl A = ‘ I n  n > o  (196) 
n 

n’r 0 

where 



The 

ceedure. 

m a y  now be determined by a simple iterative pro- 

Proceeding now to the solution of equation (191) let 

us choose the following initial two-particle correlation 

f unc t ion. 

Here p('2) is the shgle-particle velocity distribution 
function and S(2,O) I s  the initial clustering spectrum. Com- 

paring equations (199) and (180) we see that in the present 

case 

and therefore 

Note too that in the present case equation 

(201) 

(187) becomes 

(202) 

We shall choose jU(z) to be a normalized Gaussian. 
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Since the Fourier transform of a Gaussian of zero mean I s  

another Gaussian of zero mean g($) I s  of the form 

The con8tants a and b are easily evaluated. 

And 

(205) 

For simplicity the expansion parameter R(s) w i l l  be 

taken to correspond to the marginally bound universe. Set- 

t i n g  6=0 In equation (31) WB have 



I$ I s  convenient t o  use units  of t i m e  and length 

such that 

and 

In these units 

and 

Equations (210) and (211) may now be substituted Into equa- 

t ion  (198) t o  give 3 as a function of k and s. 

In order for the results t o  be eas i ly  interpreted 

it  i s  necessary t o  express them i n  terms of the physical 
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time t. Let us therefore integrate equation (15) using the 

form of the expansion parameter given in equation (207). We 

shall take the origin of tlme at the start of the expansion, 

corresponding to s = - w .  Thur 
L 

The actual numerical computation of 3 was carried 
out with the aid of the I.B.M. 1620 computer at Brandeis 

University. The value of s- was taken as 2.205 in order 

to allow R to increase by two full orders of magnitude. The 

number of increments N was taken as 100. The wave number k 

was allowed to take on 11 values in steps of 0.5 from 0.0 

to 5.0, As a check on the accuracy obtained the calculation 

was repeated at 200 Increments for k=O.O, 1.0, and 2.0 . 
These more accurate results differed from the 100 increment 

results by less than .5$. The final results are presented 

graphically on the following two pages and in tabular form 

in appendix C, 

With the aid of equation (202) one may draw some 

simple conclusions with regard to the clustering spectrum 

from t N s  data. It is clear that the portions of the spectrum 
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THE FUNCTION 13(k,t)l * 
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at large wave numbers and therefore corresponding to short 

wave lengths tend to rapidly diminish. This is due to the 

phenomenon of Landau damping or phase mixing. The small 

wave number portion of the spectrum tends to rapidly grow 

with time. This is a reflection of the long-range nature 

of the gravitational force. We conclude that there is a 

rather poorly defined characteristic length A such that 

clustering o n , a  smaller scale tends to diminish and cluster- 

ing on a larger scale to grow. Somewhat arbitrarily taking 

the dimensionless critical wave number to be unity we may 

express A In terms of the physical quantities entering the 

problem. Refering to equations (208) and (209)  we find . 

This is substantially the result of Jeans (10). Of course 

the details of the time development of the irregularities 

as developed In this thesis differ substantially from that 

early work. In particular Jeans took for the unperturbed 
system a static universe, now b.own to be contradicted by 

observation. Also, Jeans chose t o  represent the material of 

the universe as a compressible fluid. This real fluid dif- 

fers from what has been called in this thesis the continutM 

limit of a distribution of particles by possessing a t  each 



91 
point a single velocity of flow as well as a certain pressure. 

As a consequence, Jeans found that small wave length dls- 

turbances propagated as sound waves rather than simply being 

dissipated as has been shown here. 

A more relevant treatment has been given by Lifshitz 

(12). In this general relativistic analysis the unperturbed 
state was taken to be an Einstein-Friedmann expanding uni- 

verse, HeTe too however, the material was assumed to be 

an ordinary fluid and so again no Landau damping was found. 

V. THE EFFECT OF NOH-LINEARITY 

It was mentioned in section 11. that interaction 

between different parts of the clustering spectrum results 

from the occurence of non-linear terms in equations (161). 

Let us see how this comes about. 

Differentiating the second of equations (161) with 
$ac’ 

respect to s on obtains, among others, a contribution to 

of the form 

Substituting for the time derivative of g(3) the quantity 

obtained from the third of these equations one discovers 

a partial contribution to ’3 of the form L (a) 
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Since g(*) appears quadratically this expression w i l l ,  

upon Fourier transformation, result In the occurence of 

a convolution integral of the form 

Such integrals represent, in some sense, the interaction of 

different parts of the clustering spectrum. 

This property of non-linear terms resulting In the 

coupling of different parts of a spectrum function is actually 

quite general. In the theory of hydrodynamic turbulence, f o r  

exaq.de, the quadratic appearance of the velocity in the 
convective or inertial term 3.173 results in a similar 

transfer of energy between different parts of the correspond- 

ing kinetic energy spectrum. 
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At this point it may be useful t o  summarize the  

physical r e s u l t s  of the work that  has been presented. 

F i r s t  of all, we have seen t h a t  it i s  possible to 

introduce a s e t  of coordinates i n  which the expanding system 

of gravitating p a r t i c l e s  assumes the form of a non-expanding 

d i s t r ibu t ion  with a negative mass background and an e x p l i c i t  

time dependence of the gravi ta t ional  constant. 

It w a s  shown too that the  correlat ion functions pro- 

vide a convenient description of the s t a t i s t i c a l  distribu- 

t i o n  of par t ic les .  In  par t icu lar ,  the discussion of hier-  

archical  c luster ing showed that  the vanishing of these func- 

t i ons  corresponds t o  the absence of correlat ions in the 

i n t u i t i v e  sense. 

The two-particle correlat ion function was used t o  

redefine Layzer's peculiar binding energy i n  order t o  obtain 

a quantity more appropriate t o  a par t icu la te  dis t r ibut ion.  

It was shown tha t  t h i s  redefined quantity obeys prec ise ly  

the same energy equation as Layzer's o r ig ina l  quantity. 



APPENDIX A 

FUNCTIONAL DIFFERENTIATION 

Functional differentiation plays the same role in 

the theory of functlonals as partial differentiation does 

in the theory of functions of multiple variables. The oper- 

ation was first introduced by V. Volterra (11). 

Let 3 be a set of variables in some space. For the 
applications of this thesis 3 will denote a point in six- 

dimensional position-velocity space. Let *Lwg be a funce 

tional of an arbitrary function of 2, ~ ( 2 ) .  The functional 

derivative of 9 with respect to w at the point 
to be 

is defined 

where 5s any function satisfying the conditions 

and 

The functional derivative of !? with respect to w 

at the point ̂x is thus the ratio of the increment in 9 
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The actual calculation of the clustering spectrum 

for a three-level hierarchical distribution showed that the 

occurence of clustering on some well defined U-near scale, 

say L, does not necessarily imply a peak in the clustering 

spectrum at k=l/L. It appears that t h e  stability of the 

clustering spectrum in the ordinary sense I s  not quite 

equivalent to the stability of the physical clustering hier- 

archy. 

1 

I 

In discussing the general structure of the equations 

of motion for the correlation functions it was seen that the 

interesting problem of the transfer of energy between dif- 

ferent parts of the clustering spectrum requires a non- 

linear analysis which has not been attempted. 

Final ly ,  the numerical calculation of the development 

of the clustering spectrum in the linear approximation 

showed that large-scale irregularities grow because of 

gravitational clustering while small-scale irregularities 

dissipate as a result of Landau damping. The dividing line 

between these two types of behavior is approximately the 

Jeans critical wave length. 
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when i ts  argument function i s  varied very s l i g h t l y  i n  the 

neighborhood of x', t o  the i n t e g r a l  of t h i s  variation, 

The most basic class of functlonals a r e  the monomials, 

Let f(?I,.,?n) be a def ini te  function of n points i n  x' space. 

f generates a monomial functional of the n ' t h  degree, 

We may, without any loss of  generali ty,  assume f t o  be 

symmetric under any interchange of I ts  arguments. The func- 

t i o n a l  derivative of il/ is  calculated by subst i tut ing equa- 

t i o n  (A 2) i n t o  equations (A  l) and dropping terms of higher 

order than the f i r s t  i n  8 ( and therefore i n ( ) .  The r e s u l t  

i s  

Notice that  the r e su l t  i s  a monomial of m e  degree l e s s ,  

This process may be repeated. I n  par t icu lar  the n-fold 

derivat ive is given by 
n 

7---- - - ~  - -- . .  
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The function w(j?) may itself be regarded as a mono- 

mial functional of the first degree by writing It as 

It therefore follows t k t  the functional derivative of w(;) 

I s  given by 

Note the similarity to the usual result for partial differ- 

entiation with respect t o  the Independent variables wl..wn. 

The usual rules of differentiation hold for flrnc- 

tional differentiation as well.. Thus, if $ is a function 
of a single argument, and if (6' is Its derivative with 

respect to this argument, the chain rule holds in the fol- 

lowing form. 

The usual rule for thederivat'iveof a product holds tooo 

Fina l ly ,  functional differentiation commutes with 

.. . 



98 
in tegra t ion  over 

t i a t i o n  with respect t o  w i  commutes with sunnnation over the 

index. 

i n  the same way tha t  p a r t i a l  dl f feren-  



APPENDIX B 

THE JOINT-GAUSSIAN RANDOM FIELD 

A collection of N random variables q..xbi is said t o  

be distributed according t o  a joint-Gaussian law if the 
probability density for the distribution is of the form 

where the constant is chosen so that P Integrates to unity. 
= e -  

The mtrix aJk may be taken to be symmetric. 

Associated with this probability density there is a 

characteristic function pI(yl..yN) from which the various 

moments of the distribution are obtained by differentiation. 
Y 

In order to perform the integration required in 



equation (B 3) 
Let agl be the 

then write the 
N 
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we assume that the matrix a is non-singular. 

inverse of a and det a its determinant. We may 

exponent appearing in (B 3) as follows. 

We introduce a new set of variables given by 

The Jacobian of this transformation is 

Substituting the new variables into equation (B 3) with the 
aid of equation (B 5) we find 

c yd (64) - QG Y, U, 4 K.  ye)= e a d,* 

The remaining integral no longer depends on the y's. It is 
thus simply a number and is evaluated merely by requiring 

which follows from the normalization of the probability 
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density P. The characteristic function is then given by 

The matrix a-1 may be evaluated In terms of the 

second moments of the distribution by differentiating the 

characteristic function twice and setting the y's t o  zero. 

= - < X i ) <  x,) - 

Thus 

The characteristic function is therefore 

(B 12) 

A random field p(f,Z) may be said to be distributed 

according to a joint-Gaussian law if the values of p at any 

N points In position-velocity space are joint-Gaussian, Let 

us consider p(F,z) to be the limit of a sequence of functions 

which are piecewise .canthuous over small regions posi- 
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tion-velocity space denoted by Aj. Let p ( j )  be the constant 

value of p(y,'z) in cell j, The characteristic fhnctional of 

the joint-Gaussian random field p is then given by 



APPEXDIX C. 

NUMERICAL BESULTS‘ 

On the following three pages appear some of the 

numerical results of the computation of 

described in chapter V. Since It is I’Sl’ 
the growth of the clustering spectrum it is this function 

which is tabulated kather than 3 For the sake of com- 

pleteness R(t) is tabulated too. As mentioned in the text 

the following data correspond to a division of the range 

of the time-like variable s into h e  hundred equal incre- 

ments. 

g(k,t) as 
which indicates 

The origin of time has been chosen to be the start of 

the expansion. The data is tabulated in terms of dimension- 

less variables 

and 

where 

timer (the time at which R=l) e and 

square of the peculiar velocity at that time. 

P(0) is the average density of matter at the initial 
( 2 )  is the average 
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